Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide

نویسندگان

  • J.-T. Lin
  • R. V. Martin
چکیده

Retrievals of tropospheric nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI) are subject to errors in the treatments of aerosols, surface reflectance anisotropy, and vertical profile of NO2. Here we quantify the influences over China via an improved retrieval process. We explicitly account for aerosol optical effects (simulated by nested GEOS-Chem at 0.667 long. × 0.5 lat. and constrained by aerosol measurements), surface reflectance anisotropy, and high-resolution vertical profiles of NO2 (simulated by GEOS-Chem). Prior to the NO2 retrieval, we derive the cloud information using consistent ancillary assumptions. We compare our retrieval to the widely used DOMINO v2 product, using MAX-DOAS measurements at three urban/suburban sites in East China as reference and focusing the analysis on the 127 OMI pixels (in 30 days) closest to the MAX-DOAS sites. We find that our retrieval reduces the interference of aerosols on the retrieved cloud properties, thus enhancing the number of valid OMI pixels by about 25 %. Compared to DOMINO v2, our retrieval better captures the day-to-day variability in MAX-DOAS NO2 data (R2 = 0.96 versus 0.72), due to pixel-specific radiative transfer calculations rather than the use of a look-up table, explicit inclusion of aerosols, and consideration of surface reflectance anisotropy. Our retrieved NO2 columns are 54 % of the MAX-DOAS data on average, reflecting the inevitable spatial inconsistency between the two types of measurement, errors in MAX-DOAS data, and uncertainties in our OMI retrieval related to aerosols and vertical profile of NO2. Sensitivity tests show that excluding aerosol optical effects can either increase or decrease the retrieved NO2 for individual OMI pixels with an average increase by 14 %. Excluding aerosols also complexly affects the retrievals of cloud fraction and particularly cloud pressure. Employing various surface albedo data sets slightly affects the retrieved NO2 on average (within 10 %). The retrieved NO2 columns increase when the NO2 profiles are taken from MAX-DOAS retrievals (by 19 % on average) or TM4 simulations (by 13 %) instead of GEOS-Chem simulations. Our findings are also relevant to retrievals of other pollutants (e.g., sulfur dioxide, Published by Copernicus Publications on behalf of the European Geosciences Union. 1442 J.-T. Lin et al.: Improved retrieval of tropospheric nitrogen dioxide from OMI formaldehyde, glyoxal) from UV–visible backscatter satellite instruments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of tropospheric ozone concentration trend of Kermanshah by meteorological parameter and ozone precursor and OMI images

Abstract: Clean air is a necessity for human well-being and health. Air pollution is a major threat to humans and other organisms and is considered as one of the environmental challenges. Today, with the increase in air pollution, the need to know more about the causes of its occurrence has been raised. The various consequences of air pollution have made air quality monitoring and control inev...

متن کامل

Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011

An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of Deriving Information on Surface COnditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). Satellite retrievals of t...

متن کامل

An improved retrieval of tropospheric nitrogen dioxide from GOME

[1] We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset li...

متن کامل

Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS

We present a new algorithm based on the iterative spectral fitting technique for direct retrieval of nitrogen dioxide (NO2) vertical columns from hyperspectral satellite measurements, and a new spatial technique for separating the stratospheric and tropospheric contributions to the total NO2 vertical columns. This direct vertical column fitting (DVCF) algorithm allows more complete treatment of...

متن کامل

Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument

Nitrogen dioxide retrievals from the Aura/Ozone Monitoring Instrument (OMI) have been used extensively over the past decade, particularly in the study of tropospheric air quality. Recent comparisons of OMI NO2 with independent data sets and models suggested that the OMI values of slant column density (SCD) and stratospheric vertical column density (VCD) in both the NASA OMNO2 and Royal Netherla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014